国产成人久久777777-国产农村妇女毛片精品久久-精品少妇人妻AV一区二区-少妇人妻精品一区二区三区-无码人妻精品一区二区

Identification of strategy parameter

時間:2023-05-07 03:52:47 自然科學論文 我要投稿
  • 相關推薦

Identification of strategy parameters for particle swarm optimizer through Taguchi method

Abstract:Particle swarm optimization (PSO), like other evolutionary algorithms is a population-based stochastic algorithm inspired from the metaphor of social interaction in birds, insects, wasps, etc. It has been used for finding promising solutions in complex search space through the interaction of particles in a swarm. It is a well recognized fact that the performance of evolutionary algorithms to a great extent depends on the choice of appropriate strategy/operating parameters like population size,crossover rate, mutation rate, crossover operator, etc. Generally, these parameters are selected through hit and trial process, which is very unsystematic and requires rigorous experimentation. This paper proposes a systematic based on Taguchi method reasoning scheme for rapidly identifying the strategy parameters for the PSO algorithm. The Taguchi method is a robust design approach using fractional factorial design to study a large number of parameters with small number of experiments. Computer simulations have been performed on two benchmark functions-Rosenbrock function and Griewank function-to validate the approach. 作者: Author: KHOSLA Arun[1]  KUMAR Shakti[2]  AGGARWAL K.K.[3] 作者單位: Department of Electronics and Communication Engineering, National Institute of Technology, Jalandhar 144011, IndiaCentre for Advanced Technology, Haryana Engineering College, Jagadhari 135003, IndiaVice Chancellor, GGS Indraprastha University, Delhi 110006, India 期 刊: 浙江大學學報A(英文版)   ISTICEISCI Journal: JOURNAL OF ZHEJIANG UNIVERSITY SCIENCE A 年,卷(期): 2006, 7(12) 分類號: N941 TP301.6 Keywords: Strategy parameters    Particle swarm optimization (PSO)    Taguchi method    ANOVA    機標分類號: TS9 TN3 機標關鍵詞: Taguchi method    evolutionary algorithms    fractional factorial design    robust design    search space 基金項目: Identification of strategy parameters for particle swarm optimizer through Taguchi method[期刊論文]  浙江大學學報A(英文版) --2006, 7(12)Particle swarm optimization (PSO), like other evolutionary algorithms is a population-based stochastic algorithm inspired from the metaphor of social interaction in birds, insects, wasps, etc. It has b...

【Identification of strategy parameter】相關文章:

Aircraft Flutter Modal Parameter Identification Using a Numerically Robust Least-squares Estimator in Frequency Domain04-28

Study of (∧) decay parameter in J/ψ→∧(∧)decay04-29

Purification and Structure Identification of Hyaluronic Acid04-28

Co-operative learning—a good teaching strategy04-30

Application of homotopy parameter inversion method in Miyun Reservoir04-27

A Method for Identification of Selenoprotein Genes in Archaeal Genomes05-02

Recording-based identification of site liquefaction04-29

Pharmacophore Identification of Hydroxamate HDAC 1 Inhibitors04-29

Identification of an epitope of SARS-coronavirus nucleocapsid protein04-28

Identification of Rhodiola species by using RP-HPLC04-29

主站蜘蛛池模板: 吉安市| 油尖旺区| 镇安县| 景宁| 许昌县| 江川县| 伊宁县| 固安县| 东丽区| 朝阳市| 阜南县| 枣庄市| 辉县市| 宜兴市| 全椒县| 义乌市| 若羌县| 昌都县| 滕州市| 永清县| 安仁县| 阿图什市| 临颍县| 顺义区| 射阳县| 潞西市| 泗洪县| 威海市| 饶平县| 紫云| 阳高县| 巴东县| 昭平县| 广安市| 聂拉木县| 鄂温| 镇原县| 观塘区| 九龙坡区| 大冶市| 西平县|