- 新課標高中數學教案 推薦度:
- 相關推薦
新課標高中數學教案(通用15篇)
作為一位不辭辛勞的人民教師,時常會需要準備好教案,教案有助于學生理解并掌握系統的知識。教案應該怎么寫才好呢?以下是小編整理的新課標高中數學教案,希望能夠幫助到大家。
新課標高中數學教案 1
一、教材分析
(一)地位與作用
函數是中學數學中最重要的基本概念之一,函數的學習大致可分為三個階段:第一階段在義務教育階段,學習了函數的描述性概念,接觸了正比例函數,凡比例函數,一次函數,二次函數等;本章學習的函數的概念、基本性質與后續將要學習的基本初等函數(i)和(iI)是函數學習的第二階段,是對函數概念的再認識階段;第三階段在選修系列得導數及其應用的學習,使函數學習的進一步深化和提高。因此函數及其表述這一節在高中數學中,起著承上啟下的作用,函數的思想貫穿高中數學的始終,學好這章不僅在知識方面,更重要的是在函數的思想、方法方面,將會讓學生在今后的學習、工作和生活中受益無窮。
本小節介紹了函數概念,及表示方法。我將本小節分為兩課時,第一課時完成函數概念的教學,第二課時完成函數圖象的教學。這里我主要談談函數概念的教學。
函數的概念部分用三個實際例子設計數學情境,讓學生探尋變量和變量的對應關系,結合初中學習的函數理論,在集合論的基礎上,促使學生建構出函數的概念,體驗結合舊知識,探索新知識,研究新問題的快樂。
(二)學情分析
(1)在初中,學生已經學習過函數的概念,并且知道函數是變量之間的相互依賴關系
(2)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(3)學生層次參次不齊,個體差異比較明顯。
二、目標分析
根據《函數的概念》在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標
(1)知識與技能
1進一步體會函數是描述變量之間的依賴關系的重要數學模型,○能用集合與對應的語言刻畫函數,體會對應關系在刻畫函數概念中的作用
2了解構成函數的要素,○理解函數定義域和值域的概念,并會求一些簡單函數的`定義域。③由實際問題出發,培養學生探索知識和抽象概括知識等方面的能力。
(2)過程與方法
引導學生觀察,探尋變量和變量的對應關系,通過歸納、抽象、概括,自主建構函數概念;體驗結合舊知識探索新知識,研究新問題的快樂
(3)情感態度與價值觀
通過對函數概念形成的探究過程培養學生發現問題,探索問題,不斷超越的創新品質
(二)重點難點
重點:體會函數是描述變量之間的依賴關系的重要數學模型,正確理解函數的概念難點:函數概念及符號y=f(x)的理解
三、教法、學法分析
(一)教法
在本課的教學過程中采用設問、引導、啟發、發現的方法,并靈活應用多媒體手段,以學生為主體,創設和諧、愉悅互動的環境,組織學生自主、合作的探究活動,引導學生探索新知識。
(二)學法
首先,學生通過研究教師在課堂上提供的實例和提出的問題,展開分析和討論,發表個人的見解,接下來采用學生評價學生的方法提煉問題的中心思想。其次,學生通過對新舊兩種函數定義的對比,在集合論的觀點下初步建構出函數的概念。最后,學生在理解函數概念的基礎上,建構出函數的定義域、值域的概念,并初步掌握它們的求法。
四、教學過程分析
(一)教學過程設計
(1)創設情境,提出問題。
引入課本的三個具體實例,引發學生的探索
對于例1:可以分別讓學生計算t=1,2,5,10時,炮彈距離地面多高,同時關注t和h的變化范圍,引導學生體會有解析式刻畫變量之間的對應關系,啟發學生用集合與對應的語言描述函數關系:
對于例2:可以讓學生觀察圖像,找出臭氧空洞面積的年份或者臭氧空洞面積大約為20xx萬平方千米所對應的年份,引導學生體會圖像對刻畫變量之間的對應關系,并關注t和s的范圍。啟發學生再次利用集合與對應的語言描述函數關系:
對于例3:恩格爾系數與時間之間的關系是否和前兩個例題的兩個變量之間的關系相似?如何用集合和對應的語言進行描述
(2)引導探究,建構概念。
(1)進一步提問:“你覺得這三個問題有沒有共同的特點呢?”由于這個問題比較開放,所以學生,容易形成數學以外的或者不在本課研究范圍的觀點。首先采用小組合作探究的形式獲得共識,并由各小組派代表發表探究成果,接著再讓其它學生根據老師的敘述,評論、提煉出重點。作為教學的引導者,我需要及時對學生的解答進行指引。最終得出函數的概念
(2)教師概括總結學生的探究成果,形成函數概念,并進一步解釋函數概念
I、函數的三要素
Ii函數富豪的內涵
為深化學生對函數概念的理解,還可以用函數概念解析已經學過的一次函數,二次函數,婦女比例函數等,可以設計如下表格
函數一次函數二次函數反比例函數
對應關系
定義域
值域
由學生填寫
(3)自我嘗試,初步應用。
例1、判斷下列圖像是否為函數圖像。考察學生對函數定義的理解
例2、采用課本例1,并增加一問若f(x)=-1,求x
目的是引導學生探究求函數定義域的基本方法;對于用解析式表示的函數會用解析式求。
函數值或有函數值求子變量的值,進一步體會函數級號的含義,區分f(-1),f(a),f(x)
例3、采用課本例2
目的:通過判斷函數的相等認識到函數的整體性,并指出在三要素中,由于值域是由定義域和對應法則決定的,所以只要兩個函數的定義域和對應關系相同,兩個函數就相等;進一步加深函數概念的理解。
(4)當堂訓練,鞏固深化。
通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
采用課后練習1、2、3
(5)小結歸納,回顧反思。
小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:
a通過本節課的學習,你學到了哪些知識?
b通過本節課的學習,你的體驗是什么?
c通過本節課的學習,你掌握了哪些技能?
(二)作業設計
作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成
我設計了以下作業:
(1)必做題:課后習題A1(2,3),2、5、6
(2)選做題:課后習題B1、2
(三)板書設計
板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對本節是否有一個完整的集訓,并進行及時的調整和補充。
以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。
謝謝!
新課標高中數學教案 2
教學目標
(1)了解算法的含義,體會算法思想。
(2)會用自然語言和數學語言描述簡單具體問題的算法;
(3)學習有條理地、清晰地表達解決問題的步驟,培養邏輯思維能力與表達能力。
教學重難點
重點:算法的含義、解二元一次方程組的算法設計。
難點:把自然語言轉化為算法語言。
情境導入
電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務,一般要按步驟完成以下幾步:
第一步:觀察、等待目標出現(用望遠鏡或瞄準鏡);
第二步:瞄準目標;
第三步:計算(或估測)風速、距離、空氣濕度、空氣密度;
第四步:根據第三步的結果修正彈著點;
第五步:開槍;
第六步:迅速轉移(或隱蔽)
以上這種完成狙擊任務的方法、步驟在數學上我們叫算法。
課堂探究
預習提升
1、定義:算法可以理解為由基本運算及規定的運算順序所構成的完整的解題步驟,或者看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。
2、描述方式
自然語言、數學語言、形式語言(算法語言)、框圖。
3、算法的要求
(1)寫出的算法,必須能解決一類問題,且能重復使用;
(2)算法過程要能一步一步執行,每一步執行的操作,必須確切,不能含混不清,而且經過有限步后能得出結果。
4、算法的特征
(1)有限性:一個算法應包括有限的操作步驟,能在執行有窮的操作步驟之后結束。
(2)確定性:算法的計算規則及相應的計算步驟必須是唯一確定的。
(3)可行性:算法中的每一個步驟都是可以在有限的時間內完成的基本操作,并能得到確定的結果。
(4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續,且除了最后一步外,每一個步驟只有一個確定的后續。
(5)不唯一性:解決同一問題的算法可以是不唯一的
課堂典例講練
命題方向1對算法意義的理解
例1、下列敘述中,
①植樹需要運苗、挖坑、栽苗、澆水這些步驟;
②按順序進行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;
③從青島乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;
④3x>x+1;
⑤求所有能被3整除的正數,即3,6,9,12。
能稱為算法的個數為( )
A、2
B、3
C、4
D、5
【解析】根據算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。
【答案】B
[規律總結]
1、正確理解算法的概念及其特點是解決問題的關鍵、
2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內解決這一問題、
【變式訓練】下列對算法的理解不正確的是________
①一個算法應包含有限的步驟,而不能是無限的
②算法可以理解為由基本運算及規定的運算順序構成的完整的解題步驟
③算法中的每一步都應當有效地執行,并得到確定的結果
④一個問題只能設計出一個算法
【解析】由算法的有限性指包含的步驟是有限的故①正確;
由算法的明確性是指每一步都是確定的故②正確;
由算法的每一步都是確定的,且每一步都應有確定的結果故③正確;
由對于同一個問題可以有不同的算法故④不正確。
【答案】④
命題方向2解方程(組)的算法
例2、給出求解方程組的一個算法。
[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質的差別,為了適用于解一般的線性方程組,以便于在計算機上實現,我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組、
[規范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程組可化為
第二步,解方程③,可得y=-1,④
第三步,將④代入①,可得2x-1=7,x=4
第四步,輸出4,-1
方法二:算法如下:
第一步,由①式可以得到y=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,輸出4,-1
[規律總結]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調對“通法、通解”的理解,又要強調對所學知識的靈活運用。
2、設計算法時,經常遇到解方程(組)的問題,一般是按照數學上解方程(組)的.方法進行設計,但應注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據求解步驟設計算法步驟。
【變式訓練】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命題方向3篩選問題的算法設計
例3、設計一個算法,對任意3個整數a、b、c,求出其中的最小值、
[思路分析]比較a,b比較m與c―→最小數
[規范解答]算法步驟如下:
1、比較a與b的大小,若a
2、比較m與c的大小,若m
[規律總結]求最小(大)數就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數中篩選出滿足要求的一個。
【變式訓練】在下列數字序列中,寫出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一個數m,m=21;
2、將m與89比較,是否相等,如果相等,則搜索到89;
3、如果m與89不相等,則往下執行;
4、繼續將序列中的其他數賦給m,重復第2步,直到搜索到89。
命題方向4非數值性問題的算法
例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數量不少于羚羊的數量,狼就會吃掉羚羊。
(1)設計安全渡河的算法;
(2)思考每一步算法所遵循的共同原則是什么?
新課標高中數學教案 3
教學目的:
掌握圓的標準方程,并能解決與之有關的問題
教學重點:
圓的標準方程及有關運用
教學難點:
標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:
1、說出下列圓的方程
⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3
2、指出下列圓的.圓心和半徑
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
3、判斷3x-4y-10=0和x2+y2=4的位置關系
4、圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法)
練習:
1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業P811,2,3,4
新課標高中數學教案 4
1.教學目標
(1)知識目標:
1.在平面直角坐標系中,探索并掌握圓的標準方程;
2.會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程
(2)能力目標:
1.進一步培養學生用解析法研究幾何問題的能力;
2.使學生加深對數形結合思想和待定系數法的理解;
3.增強學生用數學的意識
(3)情感目標:培養學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發學生的學習興趣
2.教學重點.難點
(1)教學重點:圓的標準方程的求法及其應用
(2)教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰
當的坐標系解決與圓有關的實際問題
3.教學過程
(一)創設情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?
[引導] 畫圖建系
[學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)
解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得
即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。
(二)深入探究(獲得新知)
問題二:1.根據問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時又如何呢?
[學生活動] 探究圓的方程。
[教師預設] 方法一:坐標法
如圖,設m(x,y)是圓上任意一點,根據定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}
由兩點間的距離公式,點m適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應用舉例(鞏固提高)
i.直接應用(內化新知)
問題三:1.寫出下列各圓的方程(課本p77練習1)
(1)圓心在原點,半徑為3;
(2)圓心在 ,半徑為 ;
(3)經過點 ,圓心在點
2.根據圓的方程寫出圓心和半徑
(1) ; (2) .
ii.靈活應用(提升能力)
問題四:1.求以 為圓心,并且和直線 相切的圓的方程
[教師引導]由問題三知:圓心與半徑可以確定圓
2.已知圓的方程為 ,求過圓上一點 的`切線方程
[學生活動]探究方法
[教師預設]
方法一:待定系數法(利用幾何關系求斜率-垂直)
方法二:待定系數法(利用代數關系求斜率-聯立方程)
方法三:軌跡法(利用勾股定理列關系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關系式)
3.你能歸納出具有一般性的結論嗎?
已知圓的方程是 ,經過圓上一點 的切線的方程是:
iii.實際應用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).
[多媒體課件演示創設實際問題情境]
(四)反饋訓練(形成方法)
問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程
2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程
3.求圓x2 y2=13過點(-2,3)的切線方程
4.已知圓的方程為 ,求過點 的切線方程
新課標高中數學教案 5
教學目標:
1、理解并掌握曲線在某一點處的切線的概念;
2、理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實際背景,培養學生解決實際問題的能力和培養學生轉化問題的能力及數形結合思想。
教學重點:
理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法。
教學難點:
用“無限逼近”、“局部以直代曲”的思想理解某一點處切線的斜率。
教學過程:
一、問題情境
1、問題情境。
如何精確地刻畫曲線上某一點處的變化趨勢呢?
如果將點P附近的曲線放大,那么就會發現,曲線在點P附近看上去有點像是直線。
如果將點P附近的曲線再放大,那么就會發現,曲線在點P附近看上去幾乎成了直線。事實上,如果繼續放大,那么曲線在點P附近將逼近一條確定的直線,該直線是經過點P的所有直線中最逼近曲線的一條直線。
因此,在點P附近我們可以用這條直線來代替曲線,也就是說,點P附近,曲線可以看出直線(即在很小的范圍內以直代曲)。
2、探究活動。
如圖所示,直線l1,l2為經過曲線上一點P的'兩條直線,
(1)試判斷哪一條直線在點P附近更加逼近曲線;
(2)在點P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?
(3)在點P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
二、建構數學
切線定義: 如圖,設Q為曲線C上不同于P的一點,直線PQ稱為曲線的割線。 隨著點Q沿曲線C向點P運動,割線PQ在點P附近逼近曲線C,當點Q無限逼近點P時,直線PQ最終就成為經過點P處最逼近曲線的直線l,這條直線l也稱為曲線在點P處的切線。這種方法叫割線逼近切線。
思考:如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?
三、數學運用
例1 試求在點(2,4)處的切線斜率。
解法一 分析:設P(2,4),Q(xQ,f(xQ)),
則割線PQ的斜率為:
當Q沿曲線逼近點P時,割線PQ逼近點P處的切線,從而割線斜率逼近切線斜率;
當Q點橫坐標無限趨近于P點橫坐標時,即xQ無限趨近于2時,kPQ無限趨近于常數4。
從而曲線f(x)=x2在點(2,4)處的切線斜率為4。
解法二 設P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:
當?x無限趨近于0時,kPQ無限趨近于常數4,從而曲線f(x)=x2,在點(2,4)處的切線斜率為4。
練習 試求在x=1處的切線斜率。
解:設P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:
當?x無限趨近于0時,kPQ無限趨近于常數2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結 求曲線上一點處的切線斜率的一般步驟:
(1)找到定點P的坐標,設出動點Q的坐標;
(2)求出割線PQ的斜率;
(3)當時,割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?
解 設
所以,當無限趨近于0時,無限趨近于點處的切線的斜率。
變式訓練
1、已知,求曲線在處的切線斜率和切線方程;
2、已知,求曲線在處的切線斜率和切線方程;
3、已知,求曲線在處的切線斜率和切線方程。
課堂練習
已知,求曲線在處的切線斜率和切線方程。
四、回顧小結
1、曲線上一點P處的切線是過點P的所有直線中最接近P點附近曲線的直線,則P點處的變化趨勢可以由該點處的切線反映(局部以直代曲)。
2、根據定義,利用割線逼近切線的方法, 可以求出曲線在一點處的切線斜率和方程。
五、課外作業
新課標高中數學教案 6
教學目標:
1、使學生了解角的形成,理解角的概念掌握角的各種表示法;
2、通過觀察、操作培養學生的觀察能力和動手操作能力。
3、使學生掌握度、分、秒的進位制,會作度、分、秒間的單位互化
4、采用自學與小組合作學習相結合的方法,培養學生主動參與、勇于探究的精神。
教學重點:
理解角的概念,掌握角的三種表示方法
教學難點:
掌握度、分、秒的進位制, ,會作度、分、秒間的單位互化
教學手段:
教具:電腦課件、實物投影、量角器
學具:量角器需測量的角
教學過程:
一、建立角的概念
(一)引入角(利用課件演示)
1、從生活中引入
提問:
A、以前我們曾經認識過角,那你們能從這兩個圖形中指出哪些地方是角嗎?
B、在我們的生活當中存在著許許多多的角。一起看一看。誰能從這些常用的物品中找出角?
2、從射線引入
提問:
A、昨天我們認識了射線,想從一點可以引出多少條射線?
B、如果從一點出發任意取兩條射線,那出現的是什么圖形?
C、哪兩條射線可以組成一個角?誰來指一指。
(二)認識角,總結角的'定義
3、 過渡:角是怎么形成的呢?一起看
(1)、演示:老師在這畫上一個點,現在從這點出發引出一條射線,再從這點出發引出第二條射線。
提問:觀察從這點引出了幾條射線?此時所組成的圖形是什么圖形?
(2)、判斷下列哪些圖形是角。
(√) (×) (√) (×) (√)
為何第二幅和第四幅圖形不是角?(學生回答)
誰能用自己的話來概括一下怎樣組成的圖形叫做角?
總結:有公共端點的兩條射線所組成的圖形叫做角(angle)
角的第二定義:角也可以看做由一條射線繞端點旋轉所形成的圖形。如下圖中的角,可以看做射線OA繞端點0按逆時針方向旋轉到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊
B
0 A
4、認識角的各部分名稱,明確頂點、邊的作用
(1)觀看角的圖形提問:這個點叫什么?這兩條射線叫什么?(學生邊說師邊標名稱)
(2)角可以畫在本上、黑板上,那角的位置是由誰決定的?
(3)頂點可以確定角的位置,從頂點引出的兩條邊可以組成一個角。
5、學會用符號表示角
提問:那么,角的符號是什么?該怎么寫,怎么讀的呢?(電腦顯示)
(1)可以標上三個大寫字母,寫作:∠ABC或∠CBA,讀作:角ABC或角CBA
(2)觀察這兩種方法,有什么特點?(字母B都在中間)
(3)所以,在只有一個角的時候,我們還可以寫作: ∠B,讀作:角B
(4)為了方便,有時我們還可以標上數字,寫作∠1,讀作:角1
(5)注:區別 “∠”和“<”的不同。請同學們指著用學具折出的一個角,訓練一下這三種讀法。
6、強調角的大小與兩邊張開的程度有關,與兩條邊的長短無關。
二、 角的度量
1、學習角的度量
(1)教學生認識量角器
(2) 認識了量角器,那怎樣使用它去測量角的度數呢?這部分知識請同學們合作學習。
提出要求:小組合作邊學習測量方法邊嘗試測量
第一個角,想想有幾種方法?
1、要求合作學習探究、測量。
2、反饋匯報:學生邊演示邊復述過程
3、教師利用課件演示正確的操作過程,糾正學生中存在的問題。
4、歸納概括測量方法(兩重合一對)
(1)用量角器的中心點與角的頂點重合
(2)零刻度線與角的一邊重合(可與內零度刻度線重合;也可與外零度刻度線重合)
(3)另一條邊所對的角的度數,就是這個角的度數。
5、小結:同一個角無論是用內刻度量角,還是用外刻度量角,結果都一樣。
6、獨立練習測量角的度數(書做一做中第一題1,3與第二題)
(1) 獨立測量,師注意查看學生中存在的問題。
(2) 課件演示糾正問題
三、度、分、秒的進位制及這些單位間的互化
為了更精細地度量角,我們引入更小的角度單位:分、秒,把1°的角等分成60份,每份叫做1分記作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒記作1″.
1°=60′,1′=60″;
1′=( )°,1″=( )′.
例1 將57.32°用度、分、秒表示.
解:先把0.32°化為分,
0.32°=60′×0.32=19.2′.
再把0.2′化為秒,
0.2′=60″×0.2=12″.
所以 57.32″=57°19′12″.
例2 把10°6′36″用度表示.
解:先把36″化為分,
36″=( )′×36=0.6′
6′+0.6′=6.6′.
再把6.6′化為度,
6.6′=( )°×6.6=0.11°.
所以 10°6′36″=10.11°.
四、鞏固練習
課本P122練習
五、總結:請大家回憶一下,今天都學了那些知識,通過學習你想說些什么?
六、作業:課本P123 3、4.(1)(3)、5.(2)(4)
新課標高中數學教案 7
一、教學內容分析
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象,恰當地利用定義解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率。
四、教學目標
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3、借助多媒體輔助教學,激發學習數學的興趣。
五、教學重點與難點:
教學重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義解題
六、教學過程設計
【設計思路】
(一)開門見山,提出問題
一上課,我就直截了當地給出例題1:
(1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學情預設】
估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25
這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|5入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。
在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。
(二)理解定義、解決問題
例2:
(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2),求|PA|
【設計意圖】
運用圓錐曲線定義中的數量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。
【學情預設】
根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯系起來,這樣就容易和第二定義聯系起來,從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會。
練習:
設點Q是圓C:(x1)2225|AB|的最小值。3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。
引申:若將點A移到圓C外,點M的軌跡會是什么?
【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導學生對自己的結論進行驗證。
【知識鏈接】
(一)圓錐曲線的定義
1、圓錐曲線的第一定義
2、圓錐曲線的統一定義
(二)圓錐曲線定義的應用舉例
1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。
2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點,F1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。
3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。
4、例題:
(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。
(2)已知A(,3)為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。
(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求|MA|+|MB|的`最小值與最大值。
七、教學反思
1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。
2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。
總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。
新課標高中數學教案 8
教學目標
(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;
(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;
(3)掌握排列數公式,并能根據具體的問題,寫出符合要求的排列數;
(4)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;
(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規律,得出結論,以培養學生嚴謹的學習態度。
教學建議
一、知識結構
二、重點難點分析
本小節的重點是排列的定義、排列數及排列數的公式,并運用這個公式去解決有關排列數的應用問題。難點是導出排列數的公式和解有關排列的應用題。突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中。
從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列。因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同。排列數是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數,只要弄清相同排列、不同排列,才有可能計算相應的排列數。排列與排列數是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數。從集合的角度看,從n個元素的有限集中取出m個組成的`有序集,相當于一個排列,而這種有序集的個數,就是相應的排列數。
公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點分析好的推導。
排列的應用題是本節教材的難點,通過本節例題的分析,應注意培養學生解決應用問題的能力。
在分析應用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數,這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用。
在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數,這樣可以培養學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。
三、教法建議
①在講解排列數的概念時,要注意區分“排列數”與“一個排列”這兩個概念。一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數,而是具體的一件事;排列數是指“從n個不同元素中取出m個元素的所有排列的個數”,它是一個數。例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:
ab,ac,ba,bc,ca,cb,
其中每一種都叫一個排列,共有6種,而數字6就是排列數,符號表示排列數。
②排列的定義中包含兩個基本內容,一是“取出元素”,二是“按一定順序排列”。
從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。
在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區別。
在排列的定義中,如果有的書上叫選排列,如果,此時叫全排列。
要特別注意,不加特殊說明,本章不研究重復排列問題。
③關于排列數公式的推導的教學。公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的。
導出公式后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯。這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數是n,后面每個因數都比它前面一個因數少1,最后一個因數是,共m個因數相乘。”這實際是講三個特點:第一個因數是什么?最后一個因數是什么?一共有多少個連續的自然數相乘。
公式是在引出全排列數公式后,將排列數公式變形后得到的公式。對這個公式指出兩點:
(1)在一般情況下,要計算具體的排列數的值,常用前一個公式,而要對含有字母的排列數的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;
(2)為使這個公式在時也能成立,規定,如同時一樣,是一種規定,因此,不能按階乘數的原意作解釋。
④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解。
⑤學生在開始做排列應用題的作業時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數,這樣有利于學生得更加扎實。隨著學生解題熟練程度的提高,可以逐步降低這種要求。
新課標高中數學教案 9
一、活動主題的提出
根據新課改課程標準及高中數學教學要求,為切實實施素質教育,改革教學方式與方法,變教教材為用教材,有機地開展校本課程,培養學生的綜合實踐能力和創新能力,培養學生的探索精神和用數學的意識,以教材中的閱讀與思考為素教材,推進高中數學研究性學習的進程,對該問題進行研究,旨在為深化課堂教學內容,促進性自主研究和學習,從而探討高中數學研究性學習的實施辦法。
二、活動的具體目標
1、知識目標:通過集合中元素的個數問題的研究,探求有限集合中元素個數間的關系,比較幾個集合中元素個數的多少的方法。
2、能力目標:能多方面、多角度、多層面來探究問題,運用知識來解決問題,培養學生的發散思維和創新思維能力。
3、情感目標:學該課題的研究,激發學生的學習熱情和學習興趣,享受探索成功的樂趣,培養科學態度與科學精神。
三、活動的實施過程、方式
1、出示活動內容與思考的問題(5分鐘)
(1)、學校小賣部進了兩次貨,第一次進的貨是圓珠筆、鋼筆、橡皮、筆記本、方便面、汽水共6種,第二次進的貨是圓珠筆、鉛筆、火腿腸、方便面共4種,兩次一共進了幾種貨?回答兩次一共進了10(6+4)種,對嗎?應如何解答?有哪些方法?因此可以得出什么結論(集合中元素個數間的關系)?
(2)、學校先舉辦了一次田徑運動會,某班有8名同學參賽,又舉辦了一次球類運動會,這個班有12名同學參賽,兩次運動會都參賽的有3人。兩次運動會中,這個班共有多少名同學參賽?應如何解答?由此解出以下結論(集合中元素個數間的關系)?又如:某班共30人,其中15人喜愛籃球運動,10人喜愛乒乓球運動,8人對這兩項運動都不喜愛,則喜愛籃球運動但不喜愛乒乓球運動的人是多少?應如何解答?
(3)涉及三個及三個以上,集合的并、交問題,能用類似的結論嗎?應怎樣表達?如:學校開運動會,設。若參加一百米的同學有5人,參加二百米跑的同學有6人,參加四百米跑的同學有7人,參加一百、二百同學有2人,參加一百、四百的同學有3人,參加二百、四百的同學有5人,三項都參加的人有1人,求有多少人參賽?
(4)設計比較集合與集合B=中元素的個數的多少的方法。
2、活動分工及時間安排(25分鐘)
全班以大組為單位(共四個大組)來研究以上4個問題。第一大組研究(1)問題,第二大組研究(2)個問題,第三大組研究(3)個問題,第四大組研究(4)個問題。要求每組由學生自行確定一位負責人,并由此同學組織具體活動,明確該同學是下步活動交流中心發言人。有余力的組可協助思考其它組的問題。教師下到各組視察,了解情況,并作必要的指導。
3、活動交流(15分鐘)
請每一小組中心發言人回答各自分配的問題,全班其它同學補充,教師引導學生概括,得出結論:
列舉法
問題(1)涉及的集合元素個數較少而且具體,可用列舉法寫出,很快可解決此問題,并由特殊到一般的思維方式概括得出:
圖解法
當集合元素個數較少而不具體時,據題意畫出集合的韋恩圖,從而解決實際問題如問題(2),并歸納得出:這一結論。
數形結合法
利用集合間的關系,結合示意圖,據未知可設適當的未知數,建立方程求解,如問題(2)中的第二個問題。設喜愛籃球運動但不喜愛乒乓球運動的人數為x,則兩項都喜愛的有(15-x)人,喜愛乒乓球而不喜愛籃球的有[10-(15-x)]人,據題意有:x+(15-x)+[10-(15-x)]+8=30,解得x=12。故喜愛籃球運動但不喜愛乒乓球運動的有12人。
歸納、猜想法
通過對問題(3)的求解,并結合問題(1)、(2)的求解,歸納、猜想出:。
概念派生法
通過問題(4)的研究求解,大部分學生較易得出A,因此,由真子集的概念得出集合B的元素的個數少于集合A的元素的個數。這個結論是由概念的內涵派生出來的。
“對應”法
經研究討論,同學中有“集合A的元素個數等于集合B的.元素個數”的結論。少數同學運用“對應”思想:,顯然有此結論。這是一個多好的想法啊!
四、活動評價
充分運用高中數學子教材資源“閱讀與思考”,廣泛開展第二課堂活動,能很好地調動學生的學習興趣,能很好地開發學生的創造潛能,有助于學生探究能力和創新能力的提高。通過本課題的研究,至少有以下成功之處:第一、深化了課堂知識,進一步鞏固和拓展了所學知識;第二、培養了學生探究能力,很好地改變了學生的學習方式、方法;第三、增強了學生運用知識解決問題的意識:該課題以解決問題為背景,通過分工與合作和恰當地引導,學生用知識的意識明顯增強,運用知識解決問題的能力明顯提高;第四、培養了學生的思維品質。通過問題(4)的研究,我們得出了不一樣的結論,但都有道理,學生向引發爭議,學生的批判性思維得到較好的發展。
五、注意事項
1、教師課題準備要充分。要認真鉆研材料;查閱相關資料或研究成果;作好周密的活動計劃。切忌無準備或準備不充分就上課。
2、避免“活動研究課”上課學科化,要充分地讓學生自主的活動,不人為地牽制學生。
3、積極引導學生搞好“交流——合作”環節的活動,充分聽取學生的意見,讓學生自己總結作法和研究成果,切忌教師包辦,強加于人。
4、堅持引導學生寫好活動總結和體會,歸納研究方法與成果,忌只管上課不管下課,課后不鞏固。
新課標高中數學教案 10
教學目標
1、知識與技能
(1)推廣角的概念、引入大于角和負角;(2)理解并掌握正角、負角、零角的定義;(3)理解任意角以及象限角的概念;(4)掌握所有與角終邊相同的角(包括角)的表示方法;(5)樹立運動變化觀點,深刻理解推廣后的角的概念;(6)揭示知識背景,引發學生學習興趣。(7)創設問題情景,激發學生分析、探求的學習態度,強化學生的參與意識。
2、過程與方法
通過創設情境:“轉體,逆(順)時針旋轉”,角有大于角、零角和旋轉方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關系,探索具有相同終邊的角的表示;講解例題,總結方法,鞏固練習。
3、情態與價值
通過本節的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分。角的概念推廣以后,知道角之間的關系。理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物。
教學重難點
重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法。
難點:終邊相同的角的表示。
教學工具
投影儀等。
教學過程
創設情境
思考:你的手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了
小時,你應當如何將它校準?當時間校準以后,分針轉了多少度?
[取出一個鐘表,實際操作]我們發現,校正過程中分針需要正向或反向旋轉,有時轉不到一周,有時轉一周以上,這就是說角已不僅僅局限于之間,這正是我們這節課要研究的主要內容——任意角。
探究新知
1.初中時,我們已學習了角的概念,它是如何定義的呢?
[展示投影]角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所成的圖形。如圖,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉到終止位置OB,就形成角a.旋轉開始時的射線叫做角的始邊,OB叫終邊,射線的端點o叫做叫a的頂點。
2.如上述情境中所說的校準時鐘問題以及在體操比賽中我們經常聽到這樣的術語:“轉體”(即轉體2周),“轉體”(即轉體3周)等,都是遇到大于的角以及按不同方向旋轉而成的角。同學們思考一下:能否再舉出幾個現實生活中“大于的角或按不同方向旋轉而成的角”的例子,這些說明了什么問題?又該如何區分和表示這些角呢?
[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉時成不同的角,這些都說明了我們研究推廣角概念的`必要性。為了區別起見,我們規定:按逆時針方向旋轉所形成的角叫正角(positiveangle),按順時針方向旋轉所形成的角叫負角(negativeangle).如果一條射線沒有做任何旋轉,我們稱它形成了一個零角(zeroangle).
8.學習小結
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直
線上的角的集合。
五、評價設計
1.作業:習題組第1,2,3題。
2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,進一步理解具有相同終邊的角的特點。
課后小結
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直
線上的角的集合。
課后習題
作業:
1、習題組第1,2,3題。
2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,進一步理解具有相同終邊的角的特點。
新課標高中數學教案 11
【教學目標】
1.知識與技能
(1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:
(2)賬務等差數列的通項公式及其推導過程:
(3)會應用等差數列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導、應用過程中,培養學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。
3.情感、態度與價值觀
通過教師指導下學生的自主學習、相互交流和探索活動,培養學生主動探索、用于發現的求知精神,激發學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養成細心觀察、認真分析、善于總結的良好習慣。
【教學重點】
①等差數列的概念;
②等差數列的通項公式
【教學難點】
①理解等差數列“等差”的特點及通項公式的含義;
②等差數列的通項公式的推導過程.
【學情分析】
我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數學學習,大部分學生知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發,注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。
【設計思路】
1、教法
①啟發引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性.
②分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性.
③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.
2、學法
引導學生首先從三個現實問題(數數問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.
【教學過程】
一、創設情境,引入新課
1、從0開始,將5的倍數按從小到大的順序排列,得到的數列是什么?
2、水庫管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數列?
3、我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數列?
教師:以上三個問題中的數蘊涵著三列數.
學生:
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
(設置意圖:從實例引入,實質是給出了等差數列的現實背景,目的是讓學生感受到等差數列是現實生活中大量存在的數學模型.通過分析,由特殊到一般,激發學生學習探究知識的自主性,培養學生的歸納能力.
二、觀察歸納,形成定義
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數列有什么共同特點?
思考2根據上數列的共同特點,你能給出等差數列的`一般定義嗎?
思考3你能將上述的文字語言轉換成數學符號語言嗎?
教師:引導學生思考這三列數具有的共同特征,然后讓學生抓住數列的特征,歸納得出等差數列概念.
學生:分組討論,可能會有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導歸納出:等差數列的定義;另外,教師引導學生從數學符號角度理解等差數列的定義.
(設計意圖:通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數列的規律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數”,落實對等差數列概念的準確表達.)
三、舉一反三,鞏固定義
1、判定下列數列是否為等差數列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0.
(設計意圖:強化學生對等差數列“等差”特征的理解和應用).
2、思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?
(設計意圖:強化等差數列的證明定義法)
四、利用定義,導出通項
1、已知等差數列:8,5,2,…,求第200項?
2、已知一個等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數列問題的常用方法.
(設計意圖:引導學生觀察、歸納、猜想,培養學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創新的品質,激發學生的創造意識.鼓勵學生自主解答,培養學生運算能力)
五、應用通項,解決問題
1、判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?
2、在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數列3,7,11,…的第4項和第10項
教師:給出問題,讓學生自己操練,教師巡視學生答題情況.
學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式
(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯系.初步認識“基本量法”求解等差數列問題.)
六、反饋練習:教材13頁練習1
七、歸納總結:
1、一個定義:
等差數列的定義及定義表達式
2、一個公式:
等差數列的通項公式
3、二個應用:
定義和通項公式的應用
教師:讓學生思考整理,找幾個代表發言,最后教師給出補充
(設計意圖:引導學生去聯想本節課所涉及到的各個方面,溝通它們之間的聯系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設計反思】
本設計從生活中的數列模型導入,有助于發揮學生學習的主動性,增強學生學習數列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節課教學采用啟發方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.
高中數學教案15
【教學目標】
1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
2.能根據幾何結構特征對空間物體進行分類。
3.提高學生的觀察能力;培養學生的空間想象能力和抽象括能力。
【教學重難點】
教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
教學難點:柱、錐、臺、球的結構特征的概括。
【教學過程】
1.情景導入
教師提出問題,引導學生觀察、舉例和相互交流,提出本節課所學內容,出示課題。
2.展示目標、檢查預習
3、合作探究、交流展示
(1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?
(2)組織學生分組討論,每小組選出一名同學發表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問題:請列舉身邊的棱柱并對它們進行分類
(4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
(5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關的概念及圓柱的表示。
(6)引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
(7)教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。
4.質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。
(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)
(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?
(3)圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
(4)棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
5、典型例題
例1:判斷下列語句是否正確。
⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。
⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。
答案 A B
6、課堂檢測:
課本P8,習題1.1 A組第1題。
7.歸納整理
由學生整理學習了哪些內容
【板書設計】
一、柱、錐、臺、球的結構
二、例題
例1
變式1、2
【作業布置】
導學案課后練習與提高
1.1.1柱、錐、臺、球的結構特征
課前預習學案
一、預習目標:
通過圖形探究柱、錐、臺、球的結構特征
二、預習內容:
閱讀教材第2—6頁內容,然后填空
(1)多面體的概念: 叫多面體,
叫多面體的面, 叫多面體的棱,
叫多面體的頂點。
① 棱柱:兩個面 ,其余各面都是 ,并且每相鄰兩個四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱
②棱錐:有一個面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐
③棱臺:用一個 棱錐底面的平面去截棱錐, ,叫作棱臺。
(2)旋轉體的概念: 叫旋轉體, 叫旋轉體的軸。
①圓柱: 所圍成的幾何體叫做圓柱
②圓錐: 所圍成的幾何
體叫做圓錐
③圓臺: 的部分叫圓臺
. ④球的定義
思考:
(1)試分析多面體與旋轉體有何去別
(2)球面球體有何去別
(3)圓與球有何去別
三、提出疑惑
同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中
疑惑點 疑惑內容
新課標高中數學教案 12
教學目標:
1.理解流程圖的選擇結構這種基本邏輯結構.
2.能識別和理解簡單的框圖的功能.
3. 能運用三種基本邏輯結構設計流程圖以解決簡單的問題.
教學方法:
1. 通過模仿、操作、探索,經歷設計流程圖表達求解問題的過程,加深對流程圖的感知.
2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構.
教學過程:
一、問題情境
1.情境:
某鐵路客運部門規定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學生活動
學生討論,教師引導學生進行表達.
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構數學
1.選擇結構的概念:
先根據條件作出判斷,再決定執行哪一種操作的'結構稱為選擇結構.
2.說明:
(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判斷的不同情況進行不同的操作,這類問題的實現就要用到選擇結構的設計;
(2)選擇結構也稱為分支結構或選取結構,它要先根據指定的條件進行判斷,再由判斷的結果決定執行兩條分支路徑中的某一條;
(3)在上圖的選擇結構中,只能執行和之一,不可能既執行,又執行,但或兩個框中可以有一個是空的,即不執行任何操作;
(4)流程圖圖框的形狀要規范,判斷框必須畫成菱形,它有一個進入點和兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
新課標高中數學教案 13
一、教學目標:
1.通過高速公路上的實際例子,引起積極的思考和交流,從而認識到生活中處處可以遇到變量間的依賴關系.能夠利用初中對函數的認識,了解依賴關系中有的是函數關系,有的則不是函數關系.
2.培養廣泛聯想的能力和熱愛數學的態度.
二、教學重點:
在于讓學生領悟生活中處處有變量,變量之間充滿了關系
三、教學難點:
培養廣泛聯想的能力和熱愛數學的態度
四、教學方法:
探究交流法
五、教學過程
(一)、知識探索:
閱讀課文P25頁。實例分析:書上在高速公路情境下的問題。
在高速公路情景下,你能發現哪些函數關系?
2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關系,兩種依賴關系都有函數關系嗎?
問題小結:
1.生活中變量及變量之間的依賴關系隨處可見,并非有依賴關系的兩個變量都有函數關系,只有滿足對于一個變量的每一個值,另一個變量都有唯一確定的值與之對應,才稱它們之間有函數關系。
2.構成函數關系的兩個變量,必須是對于自變量的每一個值,因變量都有唯一確定的y值與之對應。
3.確定變量的依賴關系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。
(二)、新課探究——函數概念
1.初中關于函數的定義:
2.從集合的觀點出發,函數定義:
給定兩個非空數集A和B,如果按照某個對應關系f,對于A中的任何一個數x,在集合B中都存在唯一確定的數f(x)與之對應,那么就把這種對應關系f叫做定義在A上的函數,記作或f:A→B,或y=f(x),x∈A.;
此時x叫做自變量,集合A叫做函數的定義域,集合{f(x)︱x∈A}叫作函數的.值域。習慣上我們稱y是x的函數。
定義域,值域,對應法則
4.函數值
當x=a時,我們用f(a)表示函數y=f(x)的函數值。
(三)、知識體驗(課堂練習及課外作業)
1.某電器商店以2000元一臺的價格進了一批電視機,然后以2100元的價格售出,隨著售出臺數的變化,商店獲得的收入是,它們之間是______關系.
【函數y=100x,x∈D】
2.現實生活中,與時間存在函數關系的量_______________________.(三個以上)
【路程與時間;炮彈的射高與時間的變化關系問題;用電量與時間的關系。】
3.坐電梯時,電梯距地面的高度與時間之間存在______________關系.【函數】
4.在一定量的水中加入蔗糖,糖水的質量濃度與所加蔗糖的質量之間存在怎樣的依賴關系?如果是函數關系,指出自變量和因變量.
【是函數關系;自變量是所加蔗糖的質量;因變量是糖水的質量濃度。】
5.日期與星期之間存在怎樣的依賴關系?這種依賴關系是函數關系嗎?如果是,指出自變量和因變量.
【是函數關系;自變量是日期;因變量是星期。】
6.下列過程中變量之間是否存在依賴關系,其中哪些是函數關系:
(2)在空中作斜拋運動的鉛球,鉛球距地面的高度與時間的關系;
(3)某水文觀測點記錄的水位與時間的關系;
(4)某十字路口,通過汽車的數量與時間的關系;
(5)等邊三角形的邊長與面積之間的關系.
7.下列各式是否表示y是x的函數關系?如果是,寫出這個函數的解析式。
(1)5x+2y=1(xR);
(2)xy=-3(x0);
(3)(x(-1,0))
(4)(xR)
新課標高中數學教案 14
一、教學目標
1.知識與技能
(1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。
(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法
學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態度與價值觀
(1)提高空間想象力與直觀感受。
(2)體會對比在學習中的作用。
(3)感受幾何作圖在生產活動中的應用。
二、教學重點、難點
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學法與教學用具
1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學用具:三角板、圓規
四、教學思路
(一)創設情景,揭示課題
1.我們都學過畫畫,這節課我們畫一物體:圓柱
把實物圓柱放在講臺上讓學生畫。
2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節主要學習的內容。
(二)研探新知
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。
練習反饋
根據斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導學生與例1進行比較,與畫水平放置的`多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習,課本P16練習1(1),2,3,4
三、歸納整理
學生回顧斜二測畫法的關鍵與步驟
四、作業
1.書畫作業,課本P17練習第5題
2.課外思考課本P16,探究(1)(2)
新課標高中數學教案 15
教學目標
知識與技能目標:
本節的中心任務是研究導數的幾何意義及其應用,概念的形成分為三個層次:
(1)通過復習舊知“求導數的兩個步驟”以及“平均變化率與割線斜率的關系”,解決了平均變化率的幾何意義后,明確探究導數的幾何意義可以依據導數概念的形成尋求解決問題的途徑。
(2)從圓中割線和切線的變化聯系,推廣到一般曲線中用割線逼近的方法直觀定義切線。
(3)依據割線與切線的變化聯系,數形結合探究函數導數的幾何意義教案在導數的幾何意義教案處的導數導數的幾何意義教案的幾何意義,使學生認識到導數導數的幾何意義教案就是函數導數的幾何意義教案的圖象在導數的幾何意義教案處的切線的斜率。即:
導數的幾何意義教案=曲線在導數的幾何意義教案處切線的斜率k
在此基礎上,通過例題和練習使學生學會利用導數的幾何意義解釋實際生活問題,加深對導數內涵的理解。在學習過程中感受逼近的思想方法,了解“以直代曲”的數學思想方法。
過程與方法目標:
(1)學生通過觀察感知、動手探究,培養學生的動手和感知發現的能力。
(2)學生通過對圓的切線和割線聯系的認識,再類比探索一般曲線的情況,完善對切線的認知,感受逼近的思想,體會相切是種局部性質的本質,有助于數學思維能力的提高。
(3)結合分層的探究問題和分層練習,期望各種層次的學生都可以憑借自己的能力盡力走在教師的前面,獨立解決問題和發現新知、應用新知。
情感、態度、價值觀:
(1)通過在探究過程中滲透逼近和以直代曲思想,使學生了解近似與精確間的辨證關系;通過有限來認識無限,體驗數學中轉化思想的意義和價值;
(2)在教學中向他們提供充分的從事數學活動的機會,如:探究活動,讓學生自主探究新知,例題則采用練在講之前,講在關鍵處。在活動中激發學生的學習潛能,促進他們真正理解和掌握基本的數學知識技能、數學思想方法,獲得廣泛的數學活動經驗,提高綜合能力,學會學習,進一步在意志力、自信心、理性精神等情感與態度方面得到良好的發展。
教學重點與難點
重點:理解和掌握切線的新定義、導數的幾何意義及應用于解決實際問題,體會數形結合、以直代曲的思想方法。
難點:發現、理解及應用導數的幾何意義。
教學過程
一、復習提問
1.導數的定義是什么?求導數的三個步驟是什么?求函數y=x2在x=2處的導數.
定義:函數在導數的幾何意義教案處的導數導數的幾何意義教案就是函數在該點處的瞬時變化率。
求導數的步驟:
第一步:求平均變化率導數的幾何意義教案;
第二步:求瞬時變化率導數的幾何意義教案.
(即導數的幾何意義教案,平均變化率趨近于的確定常數就是該點導數)
2.觀察函數導數的幾何意義教案的圖象,平均變化率導數的幾何意義教案在圖形中表示什么?
生:平均變化率表示的是割線PQ的斜率.導數的幾何意義教案
師:這就是平均變化率(導數的幾何意義教案)的幾何意義,
3.瞬時變化率(導數的幾何意義教案)在圖中又表示什么呢?
如圖2-1,設曲線C是函數y=f(x)的圖象,點P(x0,y0)是曲線C上一點.點Q(x0+Δx,y0+Δy)是曲線C上與點P鄰近的任一點,作割線PQ,當點Q沿著曲線C無限地趨近于點P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點P處的切線.
導數的幾何意義教案
追問:怎樣確定曲線C在點P的切線呢?因為P是給定的,根據平面解析幾何中直線的點斜式方程的知識,只要求出切線的斜率就夠了.設割線PQ的傾斜角為導數的幾何意義教案,切線PT的傾斜角為導數的幾何意義教案,易知割線PQ的斜率為導數的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導數的幾何意義教案,即導數的幾何意義教案。
由導數的定義知導數的`幾何意義教案導數的幾何意義教案。
導數的幾何意義教案
由上式可知:曲線f(x)在點(x0,f(x0))處的切線的斜率就是y=f(x)在點x0處的導數f(x0).今天我們就來探究導數的幾何意義。
C類學生回答第1題,A,B類學生回答第2題在學生回答基礎上教師重點講評第3題,然后逐步引入導數的幾何意義.
二、新課
1、導數的幾何意義:
函數y=f(x)在點x0處的導數f(x0)的幾何意義,就是曲線y=f(x)在點(x0,f(x0))處切線的斜率.
即:導數的幾何意義教案
口答練習:
(1)如果函數y=f(x)在已知點x0處的導數分別為下列情況f(x0)=1,f(x0)=1,f(x0)=-1,f(x0)=2.試求函數圖像在對應點的切線的傾斜角,并說明切線各有什么特征。
(C層學生做)
(2)已知函數y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數在各點的導數.(A、B層學生做)
導數的幾何意義教案
2、如何用導數研究函數的增減?
小結:附近:瞬時,增減:變化率,即研究函數在該點處的瞬時變化率,也就是導數。導數的正負即對應函數的增減。作出該點處的切線,可由切線的升降趨勢,得切線斜率的正負即導數的正負,就可以判斷函數的增減性,體會導數是研究函數增減、變化快慢的有效工具。
同時,結合以直代曲的思想,在某點附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數的增減性。都反應了導數是研究函數增減、變化快慢的有效工具。
例1函數導數的幾何意義教案上有一點導數的幾何意義教案,求該點處的導數導數的幾何意義教案,并由此解釋函數的增減情況。
導數的幾何意義教案
函數在定義域上任意點處的瞬時變化率都是3,函數在定義域內單調遞增。(此時任意點處的切線就是直線本身,斜率就是變化率)
3、利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程.
例2求曲線y=x2在點M(2,4)處的切線方程.
解:導數的幾何意義教案
∴y|x=2=2×2=4.
∴點M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.
由上例可歸納出求切線方程的兩個步驟:
(1)先求出函數y=f(x)在點x0處的導數f(x0).
(2)根據直線方程的點斜式,得切線方程為y-y0=f(x0)(x-x0).
提問:若在點(x0,f(x0))處切線PT的傾斜角為導數的幾何意義教案導數的幾何意義教案,求切線方程。(因為這時切線平行于y軸,而導數不存在,不能用上面方法求切線方程。根據切線定義可直接得切線方程導數的幾何意義教案)
(先由C類學生來回答,再由A,B補充.)
例3已知曲線導數的幾何意義教案上一點導數的幾何意義教案,求:(1)過P點的切線的斜率;
(2)過P點的切線的方程。
解:(1)導數的幾何意義教案,
導數的幾何意義教案
y|x=2=22=4. ∴在點P處的切線的斜率等于4.
(2)在點P處的切線方程為導數的幾何意義教案即12x-3y-16=0.
練習:求拋物線y=x2+2在點M(2,6)處的切線方程.
(答案:y=2x,y|x=2=4切線方程為4x-y-2=0).
B類學生做題,A類學生糾錯。
三、小結
1.導數的幾何意義.(C組學生回答)
2.利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程的步驟.
(B組學生回答)
四、布置作業
1.求拋物線導數的幾何意義教案在點(1,1)處的切線方程。
2.求拋物線y=4x-x2在點A(4,0)和點B(2,4)處的切線的斜率,切線的方程.
3.求曲線y=2x-x3在點(-1,-1)處的切線的傾斜角
4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點的坐標; (2)拋物線在交點處的切線方程;
(C組學生完成1,2題;B組學生完成1,2,3題;A組學生完成2,3,4題)
教學反思:
本節內容是在學習了“變化率問題、導數的概念”等知識的基礎上,研究導數的幾何意義,由于新教材未設計極限,于是我盡量采用形象直觀的方式,讓學生通過動手作圖,自我感受整個逼近的過程,讓學生更加深刻地體會導數的幾何意義及“以直代曲”的思想。
本節課主要圍繞著“利用函數圖象直觀理解導數的幾何意義”和“利用導數的幾何意義解釋實際問題”兩個教學重心展開。先回憶導數的實際意義、數值意義,由數到形,自然引出從圖形的角度研究導數的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運用逼近的思想定義了曲線上某點的切線,再引導學生從數形結合的角度思考,獲得導數的幾何意義——“導數是曲線上某點處切線的斜率”。
完成本節課第一階段的內容學習后,教師點明,利用導數的幾何意義,在研究實際問題時,某點附近的曲線可以用過此點的切線近似代替,即“以直代曲”,從而達到“以簡單的對象刻畫復雜對象”的目的,并通過兩個例題的研究,讓學生從不同的角度完整地體驗導數與切線斜率的關系,并感受導數應用的廣泛性。本節課注重以學生為主體,每一個知識、每一個發現,總設法由學生自己得出,課堂上給予學生充足的思考時間和空間,讓學生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關鍵處加以引導。從學生的作業看來,效果較好。
【新課標高中數學教案】相關文章:
新課標高中數學教案01-04
新課標高中數學教案(人教A版)04-25
高中英語新課標心得01-28
新課標下高中化學作業的優化04-29
高中美術新課標教案(精選7篇)04-08
新課標下的高中數學教學05-02
新課標下高中物理教學論文05-06
高中必修數學教案01-07
數學教案高中教學06-11