国产成人久久777777-国产农村妇女毛片精品久久-精品少妇人妻AV一区二区-少妇人妻精品一区二区三区-无码人妻精品一区二区

A note on Marino-Vafa formula

時間:2023-04-29 22:32:00 數理化學論文 我要投稿
  • 相關推薦

A note on Marino-Vafa formula

Hodge integrals over moduli spaces of curves appear naturally during the localization procedure in computation of Gromov-Witten invariants. A remarkable formula of Marino-Vafa expresses a generation function of Hodge integrals via some combinatorial and algebraic data seemingly unrelated to these apriori algebraic geometric objects. We prove in this paper by directly expanding the formula and estimating the involved terms carefully that except a specific type all the other Hodge integrals involving up to three Hodge classes can be calculated from this formula. This implies that amazingly rich information about moduli spaces and Gromov-Witten invariants is encoded in this complicated formula. We also give some low genus examples which agree with the previous results in literature. Proofs and calculations are elementary as long as one accepts Mumford relations on the reductions of products of Hodge classes.

作 者: LU Wenxuan   作者單位: Department of Mathematics, Tsinghua University, Beijing 100084, China  刊 名: 中國科學A輯(英文版)  SCI 英文刊名: SCIENCE IN CHINA (MATHEMATICS)  年,卷(期): 2006 49(1)  分類號: O1  關鍵詞: Hodge integrals   Gromov-Witten invariants   Marino-Vafa formula   Mumford relations  

【A note on Marino-Vafa formula】相關文章:

Density-functional formula for strongly correlated systems04-26

Twenty-word formula (英語寫作20字訣)05-04

A NOTE ON THE MEAN CURVATURE FLOW IN RIEMANNIAN MANIFOLDS04-26

主站蜘蛛池模板: 平昌县| 丰都县| 和政县| 永胜县| 信丰县| 虞城县| 英山县| 涪陵区| 瑞丽市| 北流市| 获嘉县| 盖州市| 宁武县| 旬阳县| 南江县| 康定县| 中阳县| 肃宁县| 乐山市| 永吉县| 富源县| 乳山市| 中卫市| 武平县| 天气| 明光市| 关岭| 额济纳旗| 英山县| 德昌县| 宜君县| 库尔勒市| 廉江市| 隆化县| 甘南县| 逊克县| 固阳县| 博客| 于田县| 太白县| 德格县|